Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The limited availability of research instruments that reflect the vision of the Next Generation Science Standards (NGSS) restricts the field's understanding of whether and how teachers are making instructional shifts called for by the standards. The need for such instruments is particularly urgent with teachers of multilingual learners (MLs), who are called on to make shifts in how they think about and enact instruction related to both science and language. The purpose of this study was to develop and gather validity evidence for a questionnaire that measures elementary teachers' beliefs, preparedness, and instructional practices for teaching NGSS science with MLs. We report on the development of the questionnaire over three phases that elicited multiple sources of validity evidence: (a) domain specification and expert review, (b) item writing and cognitive interviews, and (c) piloting and final item selection. Data included feedback from experts in science and language domains, cognitive interviews with 48 teachers, and a pilot with 310 teachers. Results indicated that the questionnaire differentiates among teachers with different levels of the underlying constructs and also that teachers' scores relate to their characteristics (e.g., familiarity with the NGSS). We highlight two implications for emerging research on NGSS‐based instrumentation: (a) the difficulty of communicating with teachers about science and language instructional shifts while teachers are still developing their understanding of such shifts and (b) the potential of emerging NGSS‐based instruments to inform professional development. We close with future directions for our research project specifically and the field of science education broadly.more » « lessFree, publicly-accessible full text available January 1, 2026
-
IntroductionElementary teachers face many challenges when including reform-based science instruction in their classrooms, and some teachers have chosen to enhance their science instruction by introducing students to citizen science (CS) projects. When CS projects are incorporated in formal school settings, students have an opportunity to engage in real-world projects as they collect and make sense of data, yet relatively few CS projects offer substantial guidance for teachers seeking to implement the projects, placing a heavy burden on teacher learning. MethodsFramed in theory on teacher relationships with curricula, we prepared science standards-aligned educative support materials for two CS projects. We present convergent mixed methods research that examines two teachers’ contrasting approaches to including school-based citizen science (SBCS) in their fifth-grade classrooms, each using support materials for one of the two CS projects. Both are veteran teachers at under-resourced Title 1 (an indicator of the high percentage of the students identified as economically disadvantaged) rural schools in the southeastern United States. We document the teachers’ interpretations and use of SBCS materials for the CS projects with data from classroom observations, instructional logs, teacher interviews, and student focus groups. ResultsOne teacher adapted the materials to include scaffolding to position students for success in data collection and analysis. In contrast, the second teacher adapted the SBCS support materials to maintain a teacher-centered approach to instruction, identifying perceptions of students’ limited abilities and limited instructional time as constraining factors. DiscussionWe discuss the intersection of CS projects in formal education and opportunities for engaging students in authentic science data collection, analysis, and sense-making. The two teachers’ stories identify the influences of school context and the need for teacher support to encourage elementary teachers’ use of SBCS instruction to supplement their science instruction.more » « less
-
This paper shares results from surveys administered in spring 2018 to a nationally representative sample of nearly 300 U.S. high school computer science teachers. It describes the nature of high school computer science instruction and the extent to which teacher background, classroom factors, and school context predict the type of instruction students experience. Data from the study were analyzed using path modeling-a form of regression analysis that estimates both direct and indirect effects (i.e., through intermediary variables)-to examine relationships between teacher, classroom, and school factors, and the extent to which teachers (1) emphasize reform-oriented instructional objectives (e.g., learning about real-life applications of computer science) and (2) engage students in computer science practices (e.g., recognizing and defining computational problems). Sample findings include that students are most commonly engaged in activities related to testing and refining computational artifacts, but are less often engaged in aspects of computer science related to end users (e.g., create a computational artifact to be used by someone else). The path analysis highlights several factors that are related to greater engagement of students in the computer science practices, including teacher participation in professional development and the use of coherent instructional materials.more » « less
An official website of the United States government
